手把手教你,如何让转化率提升27.5倍

2017-09-19

分享到:

安迪·琼斯是一名数据分析师,曾效力于Facebook、Twitter、Quora。在他的职业生涯中,曾遇到这样一个难题:来自搜索引擎的流量占网站流量的40%,但其中只有不到0.2%的人转化成注册用户,这意味着每1000个访客中有998人最终流失掉了。

为了提高转化率,安迪的团队足足耗费了14个月的时间研究着陆页的优化,这是一段极为漫长的过程,考验着每个人的耐心。好在功夫不负有心人,他们最终成功地将转化率提高到了5.5%以上。换言之,他们将转化率提升了27.5倍。

而在提升转化率的过程中,他们使用了一样相当重要的数据分析工具:漏斗分析。

何为漏斗分析

漏斗,简单来讲,就是抽象网站或APP中的某个流程,观察流程中每一步的转化与流失。鉴于漏斗分析的相关文章很多,基础部分不再赘述。下面将会就抽象漏斗的本质、并通过一个详细的案例来阐述漏斗的具体用法。

漏斗的三元素

根据漏斗的定义,我们可以抽象出漏斗的三元素:


时间

这里的时间,特指漏斗的转化周期,即为完成每一层漏斗所需时间的集合。通常来讲,一个漏斗的转化周期越短越好,尤其是在某些转化周期较长的行业,比如:在线教育行业,B2B电商行业。

此外,单独查看每一层漏斗的时间,也能发现一些问题。举例来说,如果发现从某个渠道导入的流量,在某层漏斗的消耗时间惊人的一致,这说明该渠道的流量很可能有异常。

节点

每一层漏斗,就是一个节点。而对于节点来说,核心的指标就是转化率,公式如下:

转化率 = 通过该层的流量/到达该层的流量

整个漏斗的转化率以及每一层的转化率,可以帮助我们明确优化的方向:找到转化率低的节点,想办法提升它。

流量

流量,也就是人群。不同人群在同一个漏斗下的表现情况一定是不一样的,比如淘宝的购物漏斗,男人和女人的转化率不一样,年轻人和老人的转化率也不一样

通过人群分类,我们可以快速查看特定人群的转化率,更能清晰定位问题。

漏斗分析实战案例

现实的世界,并非是简单的数据逻辑结构,很多结果都是多种原因综合导致的。站在多种角度去分析同一个问题,往往可以得到一个更全面准确的答案。

下面我们将结合漏斗的三元素来做一个深度案例分析,通过运用数据分析的经典方法“拆分”与“对比”,定位问题,给出解决方案。

问题:购买的转化率过低

某家电商网站,从浏览宝贝详情到付款的转化率仅有3.6%。创建购买流程的漏斗,如图所示:


1. 发现问题节点

我们可以看到,加入购物车之前的转化率都较高,但在购物付款的流程中,转化率急剧降低至8%,这里可能就是需要改进的地方。


划重点:转化率低的节点,通常就是问题节点。

2. 问题确认

确定问题节点为“确认订单页面”后,开始分析该页面的数据。研究单一页面,可以使用的分析工具包括:

- 热图分析:查看该页面用户的互动行为

- 事件分析:查看该页面的各项数据统计指标,例如停留时长,事件数……

运用事件分析对问题进行分析:


可以发现如下问题:

- 用户在订单确认页停留的时间长达105秒,这与我们平时的认知不符;

- 用户在订单确认页的事件数为2985,需要进一步了解用户在这个页面上做了什么。

3. 问题细分

①用户在订单确认页停留时长过长

针对这个问题,我们发现漏掉了漏斗的一个层级,“订单确认页->成交页”应该更正为“订单确认页->选择付款方式页->成交页“。重新创建漏斗如下:


可以发现,实际上转化率较低的节点为选择付款页,转化率为9%。

②用户在相关页面上的具体事件


确认付款的事件数为1350,侧面印证了订单确认页的转化率属于正常。


成功付款的事件数为210,侧面印证了选择付款页的转化率较低。

通过对问题拆分,我们重新定位问题节点为选择付款页

划重点:对问题进行拆分,可以帮助我们深入理解问题

4. 数据对比

不同人群在同一个漏斗下的表现情况一定是不一样的。可以将到达选择付款页的用户分为两类:


通过几个人群的对比,发现“付款失败”组的人群离线环境陡增约14%。另外,其3G、2G网络的比例要高于成功付款人群(5.68%vs 1.36%),且设备品牌中,机型相对较小众、低端。


实际测试品牌1和品牌2的几个机型,针对选择付款方式页面的页面体验,存在以下问题:

① 机型适配性较差,开发时主要考虑的是现有主流机型适配,对小众机型的关注度较低;

② 页面卡顿严重,长达50秒以上的空白页面,严重消耗了用户耐心。

于是我们做出以下改善:

① 紧急修复版本,在小众机型的主要推广渠道上升级了版本适配性的App;

② 页面加载量优化,包括切割、压缩、删减图片,框架优化,预加载等策略,恶劣网络环境下加载速度提升至约15秒;

③ 加载等待页面设计,增加了动画的等待页面,增加用户等待的耐心。

5. 效果验证

页面优化后,我们的漏斗转化流程有明显改善:


我们针对这群“付款失败”用户群所做的改善,为转化漏斗提高了14%的转化效率,收益明显。

另外,我们在后续的漏斗改进中,还尝试结合了页面点击/页面流转的分析,删去了付款页面中不必要的信息、按钮,增加新的付款方式,保证了付款流程的顺畅性,对于提升漏斗也有一定的作用。

关键是思维方式

漏斗分析,仅仅是帮助我们分析问题的工具,重要的是要培养数据分析的思维方式:

- 通过交叉对比,找出数据的差异,定位异常数据;

- 通过细致拆分,把复杂的、多因子的事件分析拆分为独立的、单因子的归因分析。


「及策」是 AdMaster 推出的精细化移动推广归因和自动化营销平台,同时支持 APP、Web和微信小程序平台,能够帮助客户最高效解决用户拉新、活跃和转化问题。精准评估渠道效果,甄别异常流量,专注每一个用户的每一次互动研究,实践精细化分析和自动化的个性化营销,提升用户的转化效率,通过数据驱动用户增长。

点击这里申请免费试用「及策」

分享到:

App日活被潜规则,广告主应该怎么办...

优质流量一直都是App运营过程中的“真金白银”。广告主对优质流量资源的集中需求和关注使得行业对于透明、健康的移动营销呼声日益高涨。凭借在广告监测以及数据应用方面精耕多年的丰富经验,...查看详情>

SaaS重新定义下一代商业

2015年被称作是SaaS “元年”。SaaS已成为眼下软件时代的新势头,并带来了对传统软件开发模式和交互模式的新变革。为了更好地满足未来企业多样化的按需应用,SaaS模式将搭建起...查看详情>

凛冬年终考,汽车营销人如何交出华丽年...

车市“凛冬已至”,车企如何打好这场硬仗?TopMarketing 采访了服务多家国内外知名车企客户的 AdMaster 北京总经理王凯航(Philip Wang),通过数据拆解市场...查看详情>

咨询更多

立即联系AdMaster
扫描二维码分享到微信
确 认
  • 请填写信息下载报告

Cookie | 法律声明 | 使用说明 | 联系我们 | 产品登录

版权所有 © Copyright AdMaster Inc. 沪ICP备06027896号-1
扫描二维码关注我们
确 认